

Date: 7/1/2019

FORM 1 CERTIFICATE OF SEISMIC PERFORMANCE LEVEL UC-Designed & Constructed Facility Campus-Acquired or Leased Facility

OF

UNIVERSITY

CALIFORNIA

BUILDING DATA

Building Name: Elena Baskin Visual Arts Facilities - Building B Address: 429 Baskin Arts Service Road, Santa Cruz, CA, 95064 Site location coordinates: Latitude 36.994890 Longitudinal -122.061000

UCOP SEISMIC PERFORMANCE LEVEL (OR "RATING"): IV

ASCE 41-17 Model Building Type:

- a. Longitudinal Direction: W2 Wood Frame
- b. Transverse Direction: W2 Wood Frame

Gross Square Footage: 630 Number of stories *above* grade: 2 Number of basement stories *below* grade: 0

Year Original Building was Constructed: 1984 Original Building Design Code & Year: 1982 UBC (Per Structural Drawings) Retrofit Building Design Code & Code (if applicable): N/A

SITE INFORMATION

Site Class: D Basis: Determination of site class and assessment of geotechnical hazards are based on correspondence with Pacific Crest Geotechnical Engineers and Nolan, Zinn, and Associates Geologists. [Revised Geology and Geologic Hazards, Santa Cruz Campus, University of California, Job # 04003-SC 13 May 2005]. Site class is taken as D throughout the main campus of UC Santa Cruz.

Geologic Hazards:

 Fault Rupture: No
 Basis: County Map

 https://gis.santacruzcounty.us/mapgallery/Emergency%20Management/Hazard%20Mitigation/FaultZoneMap2009.pdf

 Liquefaction: No
 Basis: County Map

 https://gis.santacruzcounty.us/mapgallery/Emergency%20Management/Hazard%20Mitigation/LiquifactionMap2009.pdf

 Landslide: No
 Basis: County Map

 https://gis.santacruzcounty.us/mapgallery/Emergency%20Management/Hazard%20Mitigation/LiquifactionMap2009.pdf

 Landslide: No
 Basis: County Map

 https://gis.santacruzcounty.us/mapgallery/Emergency%20Management/Hazard%20Mitigation/LandslideMap2009.pdf

ATTACHMENT

Seismic Evaluation: None

UNIVERSITY OF CALIFORNIA

Date: 7/1/2019

CERTIFICATION & PRESUMPTIVE RATING VERIFICATION STATEMENT

I, Bret Lizundia, a California-licensed structural engineer, am responsible for the completion of this certificate, and I have no ownership interest in the property identified above. My scope of review to support the completion of this certificate included both of the following ("No" responses must include an explanation):

- a) the review of structural drawings indicating that they are as-built or record drawings, or that they otherwise are the basis for the construction of the building: ☑ Yes □ No
- b) visiting the building to verify the observable existing conditions are reasonably consistent with those shown on the structural drawings: ☑ Yes □ No

Based on my review, I have verified that the UCOP Seismic Performance Level (SPL) is presumptively permitted by the following UC Seismic Program Guidebook provision (choose one of the following):

☑ 1) Contract documents indicate that the original design and construction of the aforementioned building is in accordance with the benchmark design code year (or later) building code seismic design provisions for UBC or IBC listed in Table 1 below. Note: Architectural drawings by Marquis Associates and structural drawings by E.G. Hirsch & Associates, entitled "Visual Arts Facilities, University of California, Santa Cruz," and dated 14 December 1983 were reviewed; and a site visit was made on 25 May 2019. This is a Model Building Type W1 building designed to the 1982 UBC which is later than the 1976 UBC Benchmark. The building is on a sloping site of more than half a story, but the downslope walls are solid, so the Footnote "b" exception of Table 1 does not apply.

 \Box 2) The existing SPL rating is based on an acceptable basis of seismic evaluation completed in 2006 or later.

□ 3) Contract documents indicate that a comprehensive¹ building seismic retrofit design was fullyconstructed with an engineered design based on the 1997 UBC/1998 *or later* CBC, and (choose one of the following):

□ the retrofit project was completed by the UC campus. Further, the design was based on ground motion parameters, at a minimum, corresponding to BSE-1E (or BSE-R) and BSE-2E (or BSE-C) as defined in ASCE 41, or the full design basis ground motion required in the 1997 UBC/1998 CBC *or later* for EXISTING buildings, and is presumptively assigned an SPL rating of IV.

□ the retrofit project was completed by the UC campus. Further, the design was based on ground motion parameters, at a minimum, corresponding to BSE-1 (or BSE-1N) and BSE-2 (or BSE-2N) as defined in ASCE 41, or the full design basis ground motion required in the 1997 UBC/1998 *or later* CBC for NEW buildings, and is presumptively assigned an SPL rating of III.

¹ A comprehensive retrofit addresses the entire building structural system as indicated by the associated seismic evaluation, as opposed to addressing selective portions of the structural system.

Date: 7/1/2019

 \Box the retrofit project was not completed by the UC campus following UC policies, and is presumptively assigned an SPL rating of IV.

OF

UNIVERSITY

CALIFORNIA

CERTIFICATION SIGNATURE

Bret Lizundia Print Name **Executive Principal**

License Expiration Date

12-31-2020

7/1/2019

Date

Title

S3950

CA Professional Registration No.

Bat. Cuntu

Signature

Rutherford + Chekene 375 Beale Street, Suite 310 San Francisco, CA 94105 415-568-4407

Firm Name, Phone Number, and Address

AFFIX SEAL HERE

Page: 000003

Page 3

UNIVERSITY OF CALIFORNIA

Date: 7/1/2019

Table 1: Benchmark Building Codes and Standards

Building Type ^{a,b}	Building Seismic Design Provisions	
	UBC	IBC
Wood frame, wood shear panels (Types W1 and W2)	1976	2000
Wood frame, wood shear panels (Type W1a)	1976	2000
Steel moment-resisting frame (Types S1 and S1a)	1997	2000
Steel concentrically braced frame (Types S2 and S2a)	1997	2000
Steel eccentrically braced frame (Types S2 and S2a)	1988 ^g	2000
Buckling-restrained braced frame (Types S2 and S2a)	f	2006
Metal building frames (Type S3)	f	2000
Steel frame with concrete shear walls (Type S4)	1994	2000
Steel frame with URM infill (Types S5 and S5a)	f	2000
Steel plate shear wall (Type S6)	f	2006
Cold-formed steel light-frame construction—shear wall system (Type CFS1)	1997 ^{<i>h</i>}	2000
Cold-formed steel light-frame construction—strap-braced wall system (Type CFS2)	f	2003
Reinforced concrete moment-resisting frame (Type C1) ⁱ	1994	2000
Reinforced concrete shear walls (Types C2 and C2a)	1994	2000
Concrete frame with URM infill (Types C3 and C3a)	f	f
Tilt-up concrete (Types PC1 and PC1a)	1997	2000
Precast concrete frame (Types PC2 and PC2a)	f	2000
Reinforced masonry (Type RM1)	1997	2000
Reinforced masonry (Type RM2)	1994	2000
Unreinforced masonry (Type URM)	f	f
Unreinforced masonry (Type URMa)	f	f
Seismic isolation or passive dissipation	1991	2000

Note: This table has been adapted from ASCE 41-17 Table 3-2. Benchmark Building Codes and Standards for Life Safety Structural Performed at BSE-1E. Note: UBC = Uniform Building Code. IBC = International Building Code.

^a Building type refers to one of the common building types defined in Table 3-1 of ASCE 41-17.

^b Buildings on hillside sites shall not be considered Benchmark Buildings.

^c not used

^d not used

^e not used

^f No benchmark year; buildings shall be evaluated in accordance with Section III.J.

^g Steel eccentrically braced frames with links adjacent to columns shall comply with the 1994 UBC Emergency Provisions, published September/October 1994, or subsequent requirements.

^h Cold-formed steel shear walls with wood structural panels only.

ⁱ Flat slab concrete moment frames shall not be considered Benchmark Buildings.