

Text in green is to be part of UC Santa Cruz building database and may be part of UCOP database
DATE: 2019-06-28
UC Santa Cruz building seismic ratings
Visual Arts Facilities-Building I
CAAN \#7815
Elena Baskin Visual Arts, Santa Cruz, CA 95064
UCSC Campus: Main Campus


Reference South Elev. (Looking Northeast)
Plan


| Rating summary | Entry | Notes |
| :--- | :---: | :---: |
| UC Seismic Performance Level <br> (rating) | IV (Fair) |  |
| Rating basis <br> Date of rating <br> Recommended UC Santa Cruz <br> priority category for retrofit | Tier 1 | ASCE 41-17 |

[^0]
## Building information used in this evaluation

- Architectural and structural drawings by Herbert Kahn Architect, "Baskin Visual Arts Photo Studio, University of California, Santa Cruz," dated 22 July 1991.


## Additional building information known to exist

None

## Scope for completing this form

Reviewed structural drawings for original construction, made brief site visit on 23May 23 2019, and carried out ASCE 41-17 Tier 1 evaluation.

## Brief description of structure

Baskin Building I (photo studio) was added to the visual art studio complex in 1992. The building was designed by Herbert Kahn Architect.

The building is a two-story rectangular wood-framed structure that contains approximately 2,260 square feet. The site slopes down to the northeast, and the rectangle is oriented nominally with the fall line of the slope. Reference plan orientation is used such that the reference north is towards the compass northeast. In the reference east-west direction, the building out-to-out dimension is $34^{\prime} 6^{\prime \prime}$; in the reference north-south direction, the out-to-out dimension is $32^{\prime} 2-3 / 4^{\prime \prime}$. The upper floor aligns with grade on the reference south face; the lower floor aligns with grade on the reference north face. On the south, east, and west sides of the building, the soil is retained by an $8^{\prime \prime}$ reinforced concrete retaining wall. On the south side, the retaining wall extends from the foundation to underside of the upper floor. On the east and west sides, the retaining wall slopes down from south to north and does not extend to the underside of the upper floor. A wood bearing wall connects the footing to the upper floor level.

Identification of levels: The building has two stories: lower floor and upper floor. The lower floor aligns with grade on the reference north side; the upper floor aligns with grade on the reference south side. The height from the top of slab-on-grade at the lower floor to top of the upper floor is $10^{\prime} 0^{\prime \prime}$. The roof over the upper story slopes up to the north. On the reference south side, it is approximately $7^{\prime} 6^{\prime \prime}$ from the top of the main floor to the underside of the ceiling; on the reference north side, it is approximately $24^{\prime \prime} 9^{\prime \prime}$.

Foundation system: The perimeter and interior walls are supported on strip footings.
Structural system for vertical (gravity) load: At the roof, sloped 12" TJI 35s support plywood diaphragm and a metal roof, and the TJIs span between the reference north and south walls. The tall reference north wall has a central clerestory window. The top of the wall is supported by $4 \times 8$ corner posts and 4 interior TS8x4x5/16 steel tubes. At the upper floor level, $14^{\prime \prime}$ TJI 35 s span reference east-west between the exterior walls and an interior bearing wall. Walls are platform framed with $2 \times 8$ studs at $16^{\prime \prime}$ o.c. at the upper story and $2 \times 6$ studs at $16^{\prime \prime}$ at the lower story. The ground floor is a $4^{\prime \prime}$ concrete slab.
Structural system for lateral forces: At the upper story, the wall studs (and steel tubes) span out-of-plane between the upper floor and roof, the roof plywood diaphragm spans to the side walls and the plywood side walls carry loads down to the foundation. A similar approach is used for the lower story and the upper floor plywood diaphragm. The roof is a blocked $1 / 2^{\prime \prime}$ plywood diaphragm with 10d at $6^{\prime \prime}$ o.c. nailing. The upper floor is a $3 / 4 \prime$ plywood diaphragm with 10d at 6" o.c. nailing. The plywood shear walls are blocked with 10d at 4" o.c. nailing. They are connected with $5 / 8^{\prime \prime}$ diameter anchor bolts at 32 " o.c. to the top of the concrete retaining walls and footings.

Building code: The building code used for design is not listed on the architectural or structural drawings. The only date on the drawings is 22 July 1991. A history of building codes in California is provided in "Abridged History of San Francisco's Bureau of Building Inspection: 1944 to 1992," a 2016 document Lonnie Haughton of Richard Avelar \& Associates and a similar "Abridged History of the Statewide 'California Building Code'," a 2018 document also by Haughton. They inform the following. In 1978, the State Building Standards Commission was given responsibility for state building codes. The 1985 State Building Code adopted the 1982 Uniform Building Code (UBC), with an effective date of 1 October 1985. In 1989, the first California Building Code (CBC) was developed; it adopted the 1988 UBC, with an effective date of 1 July 1989 for State projects. The 1991 CBC adopted the 1991 UBC, with an
effective date of 14 August 1992. Building I was permitted under the University of California, Santa Cruz jurisdiction, and it is assumed that the State Building Code/California Building Codes were used. It thus appears likely that the 1988 UBC was the building code used for Building I.

Benchmark note: Per Table 1 of the 26 March 2019 UC Seismic Program Guidebook, Version 1.3, W2 buildings built to a code later than 1976 UBC and that are not on hillside sites can be benchmarked. The definition of the hillside site is not clearly provided either in the Guidebook or in ASCE 41-17. One interpretation is that the definition is in the W2 Tier 1 checklist which requires both a grade change of over half a story and shear walls on the downslope with aspect ratios of higher than $1 \mathrm{~V}: 1 \mathrm{H}$. Building I has a full story grade change, but the north wall is solid has an aspect ratio of $0.27 \mathrm{~V}: 1 \mathrm{H}$. There are, however, narrow pier on both the west and east sides at the downslope end. This report was prepared before the hillside site issue was clarified.

## Brief description of seismic deficiencies and expected seismic performance including mechanism of nonlinear response and structural behavior modes

There are no major deficiencies. Average loads per lineal foot in the north and south plywood shear walls from eastwest loading are below the Quick Check threshold. If a tributary area approach is used, the loads at the north wall with its large clerestory window are relatively high, still below the Quick Check threshold with a D/C ratio of 0.92.

The flexible wood-framed diaphragms, comprised of truss joists with plywood sheathing, are properly anchored to the perimeter wood-framed walls and reinforced concrete walls on the perimeter of south, east, and west sides. This allows a safe load transfer over the height of the building to the foundation. The nonlinear behavior of the structure is expected to be limited to inelastic response of wood-framed walls in the perimeter of the structure. The calculated average shear stress in the walls is well below the ASCE41-17 limit, since the building has enough number of walls in both directions to withstand the seismic load. The weakest links are likely to be the piers adjacent to the clerestory window on the reference north elevation which are highly stressed from a tributary area analysis view. Loads will likely redistribute through the roof diaphragm to the strong south wall line.

| Structural deficiency | Affects <br> rating? | Structural deficiency | Affects <br> rating? |
| :--- | :---: | :--- | :---: |
| Lateral system stress check (wall shear, column shear or <br> flexure, or brace axial as applicable) | N | Openings at shear walls (concrete or masonry) | N |
| Load path | N | Liquefaction | N |
| Adjacent buildings | N | Slope failure | N |
| Weak story | N | Surface fault rupture | N |
| Soft story | N | Masonry or concrete wall anchorage at flexible <br> diaphragm | N |
| Geometry (vertical irregularities) | N | URM wall height-to-thickness ratio | N |
| Torsion | N | URM parapets or cornices | N |
| Mass - vertical irregularity | N | URM chimney | N |
| Cripple walls | N | Heavy partitions braced by ceilings | N |
| Wood sills (bolting) | N | Appendages | N |
| Diaphragm continuity | N |  |  |

## Summary of review of nonstructural life-safety concerns, including at exit routes. ${ }^{3}$

Tanks in the dark room are not properly anchored.

[^1]$\left.\begin{array}{l|c|l|c}\hline \text { UCOP nonstructural checklist item } & \begin{array}{c}\text { Life safety } \\ \text { hazard? }\end{array} & \text { UCOP nonstructural checklist item } & \begin{array}{c}\text { Life safety } \\ \text { hazard? }\end{array} \\ \hline \begin{array}{l}\text { Heavy ceilings, feature or ornamentation above large } \\ \text { lecture halls, auditoriums, lobbies or other areas where } \\ \text { large numbers of people congregate }\end{array} & \begin{array}{c}\text { None } \\ \text { observed }\end{array} & \text { Unrestrained hazardous materials storage }\end{array}\right]$ Potential

## Basis of rating

A Seismic Performance Level Rating of Level IV is assigned to this building. It is well tied together; loads in the diaphragms and shear walls are relatively low; and there are no major deficiencies.

## Recommendations for further evaluation or retrofit

None.

## Peer review of rating

This seismic evaluation was discussed in a peer review meeting on 24 June 2019. Reviewers present were Joe Maffei of Maffei Structural Engineering and Jay Yin of Degenkolb Engineers. Comments from the reviewers have been incorporated into this report. The reviewers agreed with the assigned rating.

| Additional building data | Entry | Notes |
| :---: | :---: | :---: |
| Latitude | 36.994580 |  |
| Longitude | -122.060100 |  |
| Are there other structures besides this one under the same CAAN\# | No |  |
| Number of stories above lowest perimeter grade | 2 |  |
| Number of stories (basements) below lowest perimeter grade | 0 |  |
| Building occupiable area (OGSF) | 2,261 | From UCSC facilities database. |
| Risk Category per 2016 CBC Table 1604.5 | 11 |  |
| Building structural height, $h_{n}$ | 27 ft | Structural height defined per ASCE 7-16 Section 11.2 |
| Coefficient for period, $C_{t}$ | 0.020 | Estimated using ASCE 41-17 equation 4-4 and 7-18 |
| Coefficient for period, $\beta$ | 0.75 | Estimated using ASCE 41-17 equation 4-4 and 7-18 |
| Estimated fundamental period | 0.24 sec | Estimated using ASCE 41-17 equation 4-4 and 7-18 |
| Site data |  |  |
| 975-year hazard parameters $S_{s}, S_{1}$ | 1.281, 0.485 | From SEAOC/OSHPD website |
| Site class | D |  |
| Site class basis | Geotech ${ }^{4}$ | See footnote below |

[^2]| Site parameters $F_{a}, F_{v}$ | 1.0, 1.815 | From SEAOC/OSHPD website |
| :---: | :---: | :---: |
| Ground motion parameters $S_{c s}, S_{c 1}$ | 1.281, 0.880 | From SEAOC/OSHPD website |
| $S_{a}$ at building period | 1.28 |  |
| Site $V_{\text {s30 }}$ | $900 \mathrm{ft} / \mathrm{s}$ |  |
| $V_{s 30}$ basis | Estimated | Estimated based on site classification of D. |
| Liquefaction potential | Low |  |
| Liquefaction assessment basis | County map | See footnote below |
| Landslide potential | Low |  |
| Landslide assessment basis | County map | See footnote below |
| Applicable code |  |  |
| Applicable code or approx. date of original construction | Built: 1992 <br> Code: 1988 UBC |  |
| Applicable code for partial retrofit | None | No partial retrofit. |
| Applicable code for full retrofit | None | No full retrofit |
| FEMA P-154 data |  |  |
| Model building type North-South | W2-Wood Frames |  |
| Model building type East-West | W2-Wood Frames |  |
| FEMA P-154 score | N/A | Not included here because we performed ASCE 41 Tier 1 evaluation. |
| Previous ratings |  |  |
| Most recent rating | - | Not evaluated before. |
| Date of most recent rating | - |  |
| $2^{\text {nd }}$ most recent rating | - |  |
| Date of $2^{\text {nd }}$ most recent rating | - |  |
| $3{ }^{\text {rd }}$ most recent rating | - |  |
| Date of $3^{\text {rd }}$ most recent rating | - |  |
| Appendices |  |  |
| ASCE 41 Tier 1 checklist included here? | Yes | Refer to attached checklist file. |

https://gis.santacruzcounty.us/mapgallery/Emergency\ Management/Hazard\ Mitigation/LiquifactionMap2009.pdf https://gis.santacruzcounty.us/mapgallery/Emergency\ Management/Hazard\ Mitigation/LandslideMap2009.pdf https://gis.santacruzcounty.us/mapgallery/Emergency\ Management/Hazard\ Mitigation/FaultZoneMap2009.pdf

Color Coded Floor Plan


Upper Floor


Location of plywood shear walls

5ing

## APPENDIX A

## Additional Photos



Reference southeast corner (looking northwest)


Reference east elevation


Reference north wall with large window


Shelves and cabinets in the office


Unbraced chemical tanks in dark room

5ing

## APPENDIX B

## ASCE 41-17 Tier 1 Checklists (Structural)

| UC Campus: | Santa Cruz |  | Date: |  | $06 / 28 / 2019$ |  |  |
| ---: | :---: | :---: | ---: | ---: | :---: | :---: | :---: |
| Building CAAN: | 7815 | Auxiliary <br> CAAN: | By Firm: | Rutherford + Chekene |  |  |  |
| Building Name: | Elena Baskin Visual Arts Building I | Initials: | EB/MTN | Checked: | WAL/BL |  |  |
| Building Address: | Santa Cruz, CA 95064 |  | Page: | $\mathbf{1}$ | of | 3 |  |
| Collapse Prevention Basic Configuration Checklist |  |  |  |  |  |  |  |

## LOW SEISMICITY

BUILDING SYSTEMS - GENERAL

|  | Description |
| :---: | :---: |
| $\begin{array}{cccc} \hline C & N C & \text { N/A } & \mathbf{U} \\ - & 0 & 0 & 0 \end{array}$ | LOAD PATH: The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1) <br> Comments: In the E-W direction (transverse), a metal roof on $1 / 2^{\prime \prime}$ plywood sheathing deck delivers the lateral loads to the wood shear walls (Details $1 / 3$ and $4 / 3$ on Sheet $3 / 12$ and Details $5 / 3$ on Sheet $3 / 12$ and Details $8 / 5,10 / 5$, and $15 / 5$ on Sheet $5 / 12$ ) and from them to the soil through a reinforced concrete strip foundation. A reinforced concrete retaining wall received the loads in the south wall of the building and delivered it to the foundation. In the N - S direction (Iongitudinal), the $3 / 4$ " plywood roof and floor diaphragms transfers the load to wood shear walls which are built atop reinforced concrete footings. Well detailed connections are identified in both directions. |
| $\begin{array}{cccc} \hline \text { C } & \text { CC } & \text { N/A } & \mathbf{U} \\ \mathbf{O} & 0 & 0 & 0! \end{array}$ | ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than $0.25 \%$ of the height of the shorter building in low seismicity, $0.5 \%$ in moderate seismicity, and $1.5 \%$ in high seismicity. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2) <br> Comments: There is more than $1.5 \%$ of the height of the building to the closest structure. |
| $\begin{array}{cccc} \hline C & N C & \text { N/A } & \mathbf{U} \\ - & 0 & 0 & 0 \end{array}$ | MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3) <br> Comments: There are no mezzanines. |

## BUILDING SYSTEMS - BUILDING CONFIGURATION

|  | Description |
| :---: | :---: |
| $\begin{array}{cccc} \hline C & N C & N / A & U \\ C & O & O & O \end{array}$ | WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than $80 \%$ of the strength in the adjacent story above. (Commentary: Sec. A2.2.2. Tier 2: Sec. 5.4.2.1) <br> Comments: The length of plywood and concrete retaining walls at the lower story equals or exceeds that of the plywood walls at the upper story. |
| $\begin{array}{cccc} \hline \mathbf{C} & \mathrm{NC} & \mathrm{~N} / \mathrm{A} & \mathbf{U} \\ 0 & \mathrm{O} & \mathrm{O} & \mathrm{O} \end{array}$ | SOFT STORY: The stiffness of the seismic-force-resisting system in any story is not less than $70 \%$ of the seismic-forceresisting system stiffness in an adjacent story above or less than $80 \%$ of the average seismic-force-resisting system stiffness of the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2) <br> Comments: The length of plywood and concrete retaining walls at the lower story equals or exceeds that of the plywood walls at the upper story and the lower story is typically shorter than the upper story. |


| UC Campus: | Santa Cruz |  | Date: |  | $06 / 28 / 2019$ |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Building CAAN: | 7815 | Auxiliary <br> CAAN: | By Firm: | Rutherford + Chekene |  |  |
| Building Name: | Elena Baskin Visual Arts Building I | Initials: | EB/MTN | Checked: | WAL/BL |  |
| Building Address: | Santa Cruz, CA 95064 | Page: | $\mathbf{2}$ | of | 3 |  |
| ASCE 41-17 |  |  |  |  |  |  |
| Collapse Prevention Basic Configuration Checklist |  |  |  |  |  |  |


| $\begin{array}{cccc} \hline \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ 0 & O & O & 0 \end{array}$ | VERTICAL IRREGULARITIES: All vertical elements in the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A.2.2.4. Tier 2: Sec. 5.4.2.3) <br> Comments: All lateral force-resisting system elements are continuous to the foundation with properly detailed connections. |
| :---: | :---: |
| $\begin{array}{cccc} C & N C & N / A & U \\ 0 & O & O & O \end{array}$ | GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than $30 \%$ in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary: Sec. A.2.2.5. Tier 2: Sec. 5.4.2.4) <br> Comments: Both stories have the same horizontal dimension. |
| $\begin{array}{cccc} \hline C & N C & \text { N/A } & \mathbf{U} \\ 0 & 0 & O & 0 \end{array}$ | MASS: There is no change in effective mass of more than $50 \%$ from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5) <br> Comments: There is no significant change in the effective mass over the height of the building. |
| $\begin{array}{cccc} C & N C & N / A & U \\ 0 & O & O & O \end{array}$ | TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than $20 \%$ of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6) <br> Comments: The center of rigidity might shift toward the south due to the presence of the concrete walls, but the wood frame diaphragms can be considered flexible. |

## MODERATE SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW SEISMICITY)

GEOLOGIC SITE HAZARD

|  | Description |
| :---: | :---: |
| $C \text { NC N/A U }$ | LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within $50 \mathrm{ft}(15.2 \mathrm{~m})$ under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1) <br> Comments: There is no mapped liquefaction on https://gis.santacruzcounty.us/mapgallery/Emergency\%20Management/Hazard\%20Mitigation/LiquifactionMap2009.pdf. |
| $C \text { NC N/A U }$ | SLOPE FAILURE: The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1) <br> Comments: There are no mapped landslides on https://gis.santacruzcounty.us/mapgallery/Emergency\%20Management/Hazard\%20Mitigation/LandslideMap2009.pdf. |


| UC Campus | Santa Cruz |  | Date: | 06/28/2019 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Building CAAN | 7815 | Auxiliary CAAN: | By Firm: | Rutherford + Chekene |  |  |
| Building Name | Elena Baskin Visual Arts Building I |  | Initials: | EB/MTN | Checked: | WAL/BL |
| Building Address: | Santa Cruz, CA 95064 |  | Page: | 3 | of | 3 |
| ASCE 41-17 |  |  |  |  |  |  |
| MODERATE SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW SEISMICITY) |  |  |  |  |  |  |
| GEOLOGIC SITE HAZARD |  |  |  |  |  |  |
| $\begin{array}{cccc} \hline C & N C & N / A & U \\ 0 & \mathrm{O} & \mathrm{O} & \mathrm{O} \end{array}$ | SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. (Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1) <br> Comments: There are no faults at the project site per https://gis.santacruzcounty.us/mapgallery/Emergency\%20Management/Hazard\%20Mitigation/FaultZoneMap2009.pdf. |  |  |  |  |  |

## HIGH SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE

 ITEMS FOR MODERATE SEISMICITY)
## FOUNDATION CONFIGURATION

|  | Description |
| :---: | :---: |
| C NC N/A U | OVERTURNING: The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than $0.6 \mathrm{~S}_{\text {a. }}$ (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3) <br> Comments: <br> Building width $B=32^{\prime}-5^{\prime \prime}$, Building Height is $H=26^{\prime}, B / H=1.25$ <br> $\mathrm{Sa}=1.281 \mathrm{~g}$ per ATC at BSE-2E <br> $0.6 \times \mathrm{Sa}=0.77$ <br> $\mathrm{B} / \mathrm{H}>0.8 \mathrm{Sa}$ |
| C NC N/A U | TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4) <br> Comments: Site Class D assumed. Reinforced slab-on-grade ties the footings together per Details 11/5, 14/5, and 15/ 5 on Sheet 5. |


| UC Campus: | Santa Cruz |  | Date: | 06/28/2019 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Building CAAN: | 7815 | Auxiliary CAAN: | By Firm: | Rutherford + Chekene |  |  |
| Building Name: | EBASK BLDG L |  | Initials: | Eb/MN | Checked: | WAL/BL |
| Building Address: | Santa Cruz, CA 95064 |  | Page: | 1 | of | 4 |
|  | Collapse Prevention Structural Checklist For Building Type W2 |  |  |  | ype W2 |  |

## LOW AND MODERATE SEISMICITY

SEISMIC-FORCE-RESISTING SYSTEM

|  | Description |
| :---: | :---: |
| $\begin{array}{cccc} \hline C & N C & N / A & U \\ C & C & C & C \end{array}$ | REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2. (Commentary: Sec. A.3.2.1.1. Tier 2: Sec. 5.5.1.1) <br> Comments: Two lines of shear walls are used in each direction. |
| $\begin{array}{llll} \hline C & N C & N / A & U \\ C & C & C & C \end{array}$ | SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the following values: (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1) <br> Comments: <br> - First Story: <br> Average shear stress in N-S direction: 365 plf $<1000$ plf $\rightarrow$ OK <br> - Average shear stress in E-W direction (North wall): $\mathbf{3 4 2}$ plf $<\mathbf{1 0 0 0}$ plf $\rightarrow$ OK <br> - Second Story: <br> - Average shear stress in N-S direction: 251 plf < 1000 plf $\rightarrow$ OK <br> - Average shear stress in E-W direction (North and South wall): 489 plf < 1000 plf $\rightarrow$ OK <br> - Average shear stress in E-W direction in narrow piers in the North wall with large window: 919 plf < 1000 plf $\rightarrow$ OK |
| $\begin{array}{llll} \hline C & N C & N / A & U \\ C & C & C & C \end{array}$ | STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec. 5.5.3.6.1) <br> Comments: No exterior stucco walls are used. |
| $\begin{array}{cccc} C & N C & N / A & U \\ C & C & C & C \end{array}$ | GYPSUM WALLBOARD OR PLASTER SHEAR WALLS: Interior plaster or gypsum wallboard is not used for shear walls on buildings more than one story high with the exception of the uppermost level of a multi-story building. (Commentary: Sec. A.3.2.7.3. Tier 2: Sec. 5.5.3.6.1) <br> Comments: External 1/2" plywood and internal 5/8" gypsum board sheathing are used per details on Sheet 5/12. |


| UC Campus: | Santa Cruz |  | Date: | 06/28/2019 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Building CAAN: | 7815 | Auxiliary CAAN: | By Firm: | Rutherford + Chekene |  |  |
| Building Name: | EBASK BLDG L |  | Initials: | EB/MN | Checked: | WAL/BL |
| Building Address: | Santa Cruz, CA 95064 |  | Page: | 2 | of | 4 |
| Collapse Prevention Structural Checklist For Building Type W2 |  |  |  |  |  |  |


|  | NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces. (Commentary: Sec. A.3.2.7.4. Tier 2: Sec. 5.5.3.6.1) <br> Comments: The north wall on the second story has a pier with an aspect ratio of 2.35 on each side of the window (Detail $16 / 5$ on Sheet $5 / 12$ ). However, the member next to the window is a $4 \times 8 \times 5 / 16$ structural tube which provides more shear capacity to the piers. |
| :---: | :---: |
| $\begin{array}{cccc} \hline C & \text { NC } & \text { N/A } & \mathbf{U} \\ C & C & C & C \end{array}$ | WALLS CONNECTED THROUGH FLOORS: Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor. (Commentary: Sec. A.3.2.7.5. Tier 2: Sec. 5.5.3.6.2) <br> Comments: Upper story walls are connected to the diaphragm to transfer the loads to the bottom walls. (Detail $5 / 3$ on Sheet $3 / 12$ and Details $4 / 5,7 / 5,8 / 5,10 / 5$, and $17 / 5$ on Sheet $5 / 12$ ) |
| $\begin{array}{llll} \hline C & N C & \text { N/A } & U \\ C & C & C & C \end{array}$ | HILLSIDE SITE: For structures that are taller on at least one side by more than one-half story because of a sloping site, all shear walls on the downhill slope have an aspect ratio less than 1-to-1. (Commentary: Sec. A.3.2.7.6. Tier 2: Sec. 5.5.3.6.3) <br> Comments: The wall on the downhill slope at the north side of the building is solid and has an aspect ratio of 0.27 , between the lower and upper floor. |
| $\begin{array}{llll} \hline \mathbf{C} & \mathrm{NC} & \mathrm{~N} / \mathrm{A} & \mathbf{U} \\ \subset & \mathrm{C} & \mathrm{C} & \mathrm{C} \end{array}$ | CRIPPLE WALLS: Cripple walls below first-floor-level shear walls are braced to the foundation with wood structural panels. (Commentary: Sec. A.3.2.7.7. Tier 2: Sec. 5.5.3.6.4) <br> Comments: Plywood sheathing continues down the wood walls from the upper floor to the lower floor. |
| $\begin{array}{cccc} C & \text { NC } & \text { N/A } & \mathbf{U} \\ C & C & C & C \end{array}$ | OPENINGS: Walls with openings greater than $80 \%$ of the length are braced with wood structural panel shear walls with aspect ratios of not more than $1.5-\mathrm{to}-1$ or are supported by adjacent construction through positive ties capable of transferring the seismic forces. (Commentary: Sec. A.3.2.7.8. Tier 2: Sec. 5.5.3.6.5) <br> Comments: The north wall on the second floor ( $34^{\prime}-6^{\prime \prime \prime}$ in length by $24^{\prime}-9^{\prime \prime}$ in height) has a $24^{\prime}-8^{\prime \prime}$ by $9^{\prime}-91 / 2^{\prime \prime}$ window, which is approximately equal to the $72 \%$ of the wall length. |
| CONNECTIONS |  |
|  | Description |
| $\begin{array}{llll} \hline C & N C & N / A & U \\ C & C & C & C \end{array}$ | WOOD POSTS: There is a positive connection of wood posts to the foundation. (Commentary: Sec. A.5.3.3. Tier 2: Sec. 5.7.3.3) <br> Comments: The posts are connected to the sill using Simpson L50 angle per Detail 12/5 on Sheet 5/12. |
| $\begin{array}{cccc} \hline C & \text { NC } & \text { N/A } & \mathbf{U} \\ C & C & C & C \end{array}$ | WOOD SILLS: All wood sills are bolted to the foundation. (Commentary: Sec. A.5.3.4. Tier 2: Sec. 5.7.3.3) <br> Comments: Wood sills are connected to the foundation using one $5 / 8^{\prime \prime} \phi \times 10^{\prime \prime}$ bolt spaced $2^{\prime}-8$ " o.c. per Details $8 / 5,10 / 5$, and $15 / 5$ on Sheet $5 / 12$. |


| UC Campus: | Santa Cruz |  | Date: | 06/28/2019 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Building CAAN: | 7815 | Auxiliary CAAN: | By Firm: | Rutherford + Chekene |  |  |
| Building Name: | EBASK BLDG L |  | Initials: | EB/MN | Checked: | WAL/BL |
| Building Address: | Santa Cruz, CA 95064 |  | Page: | 3 | of | 4 |
| Collapse Prevention Structural Checklist For Building Type W2 |  |  |  |  |  |  |


| C | NC | N/A | U | GIRDER/COLUMN CONNECTION: There is a positive connection using plates, connection hardware, or straps between <br> the girder and the column support. (Commentary: Sec. A.5.4.1. Tier 2: Sec. 5.7.4.1) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Comments: No girder-column connections are used. |  |  |  |  |


| HIGH SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW AND MODERATE SEISMICITY) |  |
| :---: | :---: |
| CONNECTIONS |  |
|  | Description |
| $\begin{array}{cccc} \hline \mathbf{C} & \mathbf{N C} & \mathbf{N} / \mathbf{A} & \mathbf{U} \\ C & \mathrm{C} & \mathrm{C} & \mathrm{C} \end{array}$ | WOOD SILL BOLTS: Sill bolts are spaced at $6 \mathrm{ft}(1.8 \mathrm{~m})$ or less with acceptable edge and end distance provided for wood and concrete. (Commentary: A.5.3.7. Tier 2: Sec. 5.7.3.3) <br> Comments: Wood sills are connected to the foundation using one $5 / 8^{\prime \prime} \phi \times 10^{\prime \prime}$ bolt spaced 2'-8" o.c. per Details $8 / 5,10 / 5$, and $15 / 5$ on Sheet $5 / 12$. |
| DIAPHRAGMS |  |
|  | Description |
| $\begin{array}{cccc} \hline \mathbf{C} & \mathrm{NC} & \mathrm{~N} / \mathrm{A} & \mathbf{U} \\ C & C & C & \mathrm{C} \end{array}$ | DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level floors and do not have expansion joints. (Commentary: Sec. A.4.1.1. Tier 2: Sec. 5.6.1.1) <br> Comments: Continuous wood diaphragms are used. |
| $\begin{array}{cccc} \hline \mathbf{C} & \mathrm{NC} & \mathrm{~N} / \mathrm{A} & \mathrm{U} \\ C & C & C & C \end{array}$ | ROOF CHORD CONTINUITY: All chord elements are continuous, regardless of changes in roof elevation. (Commentary: Sec. A.4.1.3. Tier 2: Sec. 5.6.1.1) <br> Comments: At the roof, the plywood diaphragm is connected through nailed blocking to a continuous double top plate which serves as the diaphragm chord. At the upper floor, similarly, the plywood diaphragm is connected through blocking to the double top plate of the wood walls of the lower story which serves as the diaphragm chord. |
| $\begin{array}{llll} \hline C & N C & N / A & U \\ C & C & C & C \end{array}$ | DIAPHRAGM REINFORCEMENT AT OPENINGS: There is reinforcing around all diaphragm openings larger than $50 \%$ of the building width in either major plan dimension. (Commentary: Sec. A.4.1.8. Tier 2: Sec. 5.6.1.5) <br> Comments: There are no large diaphragm openings. |


| UC Campus: | Santa Cruz |  | Date: | 06/28/2019 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Building CAAN: | 7815 | Auxiliary CAAN: | By Firm: | Rutherford + Chekene |  |  |
| Building Name: | EBASK bldg L |  | Initials: | EB/MN | Checked: | WAL/BL |
| Building Address: | Santa Cruz, CA 95064 |  | Page: | 4 | of | 4 |
| ASCE 41-17 |  |  |  |  |  |  |


| $\begin{array}{cccc} \mathbf{C} & \mathbf{N C} & \text { N/A } & \mathbf{U} \\ \mathrm{C} & \mathrm{C} & 6 & \mathrm{C} \end{array}$ | STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Commentary: Sec. A.4.2.1. Tier 2: Sec. 5.6.2) <br> Comments: There are no straight-sheathed diaphragms; 1/2" and 3/4" plywood per floor and roof framing details are used per Sheet 5/12. |
| :---: | :---: |
| C NC N/A U | SPANS: All wood diaphragms with spans greater than $24 \mathrm{ft}(7.3 \mathrm{~m})$ consist of wood structural panels or diagonal sheathing. (Commentary: Sec. A.4.2.2. Tier 2: Sec. 5.6.2) <br> Comments: Diaphragm spans smaller than 24 ft . |
| $\begin{array}{cccc} \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ \mathrm{C} & \mathrm{C} & \boldsymbol{C} & \mathrm{C} \end{array}$ | DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than $40 \mathrm{ft}(12.2 \mathrm{~m})$ and have aspect ratios less than or equal to 4 -to- 1 . (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2) <br> Comments: No diagonally sheathed or unblocked structural panels are used. |
| C NC N/A U <br> $\therefore C \quad C$ | OTHER DIAPHRAGMS: The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary: Sec. A.4.7.1. Tier 2: Sec. 5.6.5) <br> Comments: The roof and floor diaphragms have plywood. |

## APPENDIX C

UCOP Seismic Safety Policy Falling Hazards Assessment Summary

| UC Campus: | Santa Cruz |  | Date: | 06/28/2019 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Building CAAN: | 7815 | Auxiliary CAAN: | By Firm: | Rutherford + Chekene |  |  |
| Building Name: | EBASK BLDG I |  | Initials: | EB | Checked: | WAL/BL |
| Building Address: | Santa Cruz, CA 95064 |  | Page: | 1 | of | 1 |
| UCOP SEISMIC SAFETY POLICY |  |  |  |  |  |  |


|  | Description |
| :---: | :---: |
| $\begin{array}{ll} \mathbf{P} & \mathbf{N} / \mathbf{A} \\ \square & \boxtimes \end{array}$ | Heavy ceilings, features or ornamentation above large lecture halls, auditoriums, lobbies, or other areas where large numbers of people congregate ( 50 ppl or more) <br> Comments: There are no heavy ceilings, features or ornamentation in the studio space. |
|  | Heavy masonry or stone veneer above exit ways or public access areas <br> Comments: There is no masonry or stone veneer. |
| $\mathbf{P}$ $\mathbf{N} / \mathbf{A}$ <br> $\square$ $\boxtimes$ | Unbraced masonry parapets, cornices, or other ornamentation above exit ways or public access areas <br> Comments: There are no masonry parapets or other ornamentation. |
| $\begin{array}{ll} \hline \mathbf{P} & \mathbf{N} / \mathbf{A} \\ \boxtimes & \square \end{array}$ | Unrestrained hazardous material storage <br> Comments: Tanks in the dark room are not anchored. |
| P N/A | Masonry chimneys <br> Comments: |
|  | Unrestrained natural gas-fueled equipment such as water heaters, boilers, emergency generators, etc. <br> Comments: No natural gas-fueled equipment was observed. |
| $\begin{array}{ll} \mathbf{P} & \mathbf{N} / \mathbf{A} \\ \square & \boxtimes \end{array}$ | Other: <br> Comments: |
| $\begin{array}{ll} \hline \mathbf{P} & \mathbf{N} / \mathbf{A} \\ \square & \boxtimes \end{array}$ | Other: <br> Comments: |
|  | Other: <br> Comments: |

## Falling Hazards Risk: Low

## APPENDIX D

## Quick Check Calculations

## Unit Weights:

|  | Seismic Weight | Dead Load |  |
| :--- | :---: | :---: | :--- |
| Rooof | psf | psf | Remarks |
| Roofing | 3 | 3 | Metal roof per arch. Dwg.; Product specification not available |
| Sheathing Board | 1.4 | 1.4 | $1 / 2$ " plywood |
| Joists | 2.5 | 2.5 | 14 " TJI 35@16" |
| Ceiling | 2 | 2 | typ. gypboard ceiling panels |
| Lighting and misc. | 5 | 5 |  |
| MEP | 3 | 3 |  |
| Columns | 0.163 | 0.163 |  |
| Partition+Plywood shear walls | 7.5 | 7.5 | Half of 15 psf |
| Total | 25 | 25 |  |


|  | Seismic Weight | Dead Load |  |
| :--- | :---: | :---: | :---: |
| Upper Floor | psf | psf | Remarks |
| Finishing | 1.4 | 1.4 | Vinyl Composite Tile |
| Sheathing Board | 2.1 | 2.1 | $3 / 4 "$ plywood |
| Joists | 2.3 | 2.3 | $12 "^{\text {T TJ 35@16" }}$ |
| Ceiling | 2 | 2 | typ. gypboard ceiling panels |
| Columns | 0.301 | 0.301 |  |
| Lighting and misc. | 5 | 5 |  |
| MEP | 3 | 3 |  |
| Partition+Plywood shear walls | 15 | 15.0 |  |
| Total | 31 | 31 |  |

## Story Weights

| Floor Levels | Floor Area (ft2) | Floor Weight (psf) | Additional Weight <br> (kips) | Total Seismic <br> Weight (kips) |
| :--- | :---: | :---: | :---: | :---: |
| Roof | 1,403 | 25 | 0 | 34 |
| Upper floor | 1,072 | 31 | 0 | 33 |
| Total Weight (kips) $=$ |  |  |  | 68 |

## Period

| $\mathrm{C}_{\mathrm{t}}=$ | 0.02 |
| :--- | ---: |
| $\mathrm{~h}_{\mathrm{n}}(\mathrm{ft})=$ | 27.00 |
| $\mathrm{~B}=$ | 0.75 |

$$
\begin{array}{|l|l|}
\hline \mathrm{T}= & 0.24 \mathrm{sec} \\
\hline
\end{array}
$$

Notes:
1- The period calculated per ASCE 41-17 Equation 4-4.

$$
\mathrm{T}=\mathrm{C}_{\mathrm{t}} \cdot \mathrm{~h}_{\mathrm{n}}^{\mathrm{B}}
$$

2- Ct and B are for "all other framing system" per ASCE 41-17 Section 4.4.2.4.
3 - The building height is taken from the base to the average height of the roof.

Rating form completed by:

## BSE-2E Response Spectrum



OSHPD

## 7815

Latitude, Longitude: 36.994580, -122.060100


| Type | Description | Value |
| :--- | :--- | :--- |
| Hazard Level | spectral response $(0.2 \mathrm{~s})$ | BSE-2E |
| $\mathrm{S}_{\mathrm{s}}$ | spectral response $(1.0 \mathrm{~s})$ | 1.281 |
| $\mathrm{~S}_{1}$ | site-modified spectral response $(0.2 \mathrm{~s})$ | 0.485 |
| $\mathrm{~S}_{\mathrm{xs}}$ | site-modified spectral response $(1.0 \mathrm{~s})$ | 1.281 |
| $\mathrm{~S}_{\mathrm{x} 1}$ | site amplification factor $(0.2 \mathrm{~s})$ | 0.881 |
| $\mathrm{f}_{\mathrm{a}}$ | site amplification factor $(1.0 \mathrm{~s})$ | 1 |
| $\mathrm{f}_{\mathrm{v}}$ |  | 1.815 |

Rating form completed by:

## Story Shears

| $\mathrm{Sa}=$ | 1.281 |  |
| :--- | ---: | :--- |
| $\mathrm{~W}=$ | 68 | kips |
| $\mathrm{C}=$ | 1.1 | ASCE 41-17 Table 4-7 |

1 - Modification Factor, C, per ASCE 41-17, Table 4-7 for two story W2 shear wall building type is used.

| $\mathrm{V}=$ | 95 | kips |
| :--- | :--- | :--- |


| $\mathrm{k}=$ | 1.00 |
| :--- | ---: |


| Floor Levels | Story Height | Total Height, $\mathbf{H}$ | Weight, $\mathbf{W}$ | $\mathbf{W} \mathbf{x} \mathbf{H}^{\mathbf{k}}$ | coeff | Fx | Story Shear, $\mathbf{V}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{( f t )}$ | $\mathbf{( f t )}$ | $\mathbf{( k i p s )}$ |  |  | (kips) | (kips) |
| Roof | 17.00 | 27.00 | 34 | 930 | 0.74 | 70 | 70 |
| Upper floor | 10.00 | 10.00 | 33 | 333 | 0.26 | 25 |  |

Notes:
1- The base of building is assumed to be at top of the slab-on-grade.

## Average Stress in Wood-framed Wall

## Average Stresses

| Average Stresses |
| :--- |
| $\mathrm{Ms}=4.5$ |


| First Story |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Direction | Story Shear | Wall Length | Opening Reduction <br> Factor | Average Shear <br> Stress | Tier 1 Shear <br> Stress Limit | Wall OK? |  |
|  | (kips) | (ft) |  | (plf) | (plf) |  |  |
| E-W direction: North wall | 48 | 34.5 | 0.90 | 342 | 1000 | OK |  |
| N-S direction | 95 | 64.5 | 0.90 | 365 | 1000 | OK |  |


| Second Story |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Direction | Story Shear | Wall Length | Opening Reduction <br> Factor | Average Shear <br> Stress | Tier 1 Shear <br> Stress Limit | Wall OK? |  |


[^0]:    ${ }^{1}$ We translate this Tier 1 evaluation to a Seismic Performance Level rating using professional judgment. Non-compliant items in the Tier 1 evaluation do not automatically put a building into a particular rating category, but we evaluate such items along with the combination of building features and potential deficiencies, focused on the potential for collapse or serious damage to the gravity supporting structure that may threaten occupant safety. See Section III.B of the 19 May 2017 UC Seismic Safety Policy and Method B of Section 321 of the 2016 California Building Code.
    2 Per Section III.A.4.i of the 26 March 2019 UC Seismic Program Guidebook, Version 1.3, the cost includes all construction cost necessitated by the seismic retrofit, including restoration of finishes and any triggered work on utilities or accessibility. It does not include soft costs such as design fees or campus costs. The cost is in 2019 dollars.

[^1]:    ${ }^{3}$ For these Tier 1 evaluations, we do not visit all spaces of the building; we rely on campus staff to report to us their understanding of if and where nonstructural hazards may occur.

[^2]:    ${ }^{4}$ Determination of site class and assessment of geotechnical hazards are based on correspondence with Pacific Crest Geotechnical Engineers and Nolan, Zinn, and Associates Geologists. [Revised Geology and Geologic Hazards, Santa Cruz Campus, University of California, Job \# 04003-SC 13 May 2005]. Site class is taken as D throughout the main campus of UC Santa Cruz. The following links provide hazard maps for liquefaction, landslide, and fault rupture:

